8 research outputs found

    Deep learning for digitized histology image analysis

    Get PDF
    “Cervical cancer is the fourth most frequent cancer that affects women worldwide. Assessment of cervical intraepithelial neoplasia (CIN) through histopathology remains as the standard for absolute determination of cancer. The examination of tissue samples under a microscope requires considerable time and effort from expert pathologists. There is a need to design an automated tool to assist pathologists for digitized histology slide analysis. Pre-cervical cancer is generally determined by examining the CIN which is the growth of atypical cells from the basement membrane (bottom) to the top of the epithelium. It has four grades, including: Normal, CIN1, CIN2, and CIN3. In this research, different facets of an automated digitized histology epithelium assessment pipeline have been explored to mimic the pathologist diagnostic approach. The entire pipeline from slide to epithelium CIN grade has been designed and developed using deep learning models and imaging techniques to analyze the whole slide image (WSI). The process is as follows: 1) identification of epithelium by filtering the regions extracted from a low-resolution image with a binary classifier network; 2) epithelium segmentation; 3) deep regression for pixel-wise segmentation of epithelium by patch-based image analysis; 4) attention-based CIN classification with localized sequential feature modeling. Deep learning-based nuclei detection by superpixels was performed as an extension of our research. Results from this research indicate an improved performance of CIN assessment over state-of-the-art methods for nuclei segmentation, epithelium segmentation, and CIN classification, as well as the development of a prototype WSI-level tool”--Abstract, page iv

    Nuclei segmentation of histology images based on deep learning and color quantization and analysis of real world pill images

    Get PDF
    Medical image analysis has paved a way for research in the field of medical and biological image analysis through the applications of image processing. This study has special emphasis on nuclei segmentation from digitized histology images and pill segmentation. Cervical cancer is one of the most common malignant cancers affecting women. This can be cured if detected early. Histology image feature analysis is required to classify the squamous epithelium into Normal, CIN1, CIN2 and CIN3 grades of cervical intraepithelial neoplasia (CIN). The nuclei in the epithelium region provide the majority of information regarding the severity of the cancer. Segmentation of nuclei is therefore crucial. This paper provides two methods for nuclei segmentation. The first approach is clustering approach by quantization of the color content in the histology images uses k-means++ clustering. The second approach is deep-learning based nuclei segmentation method works by gathering localized information through the generation of superpixels and training convolutional neural network. The other part of the study covers segmentation of consumer-quality pill images. Misidentified and unidentified pills constitute a safety hazard for both patients and health professionals. An automatic pill identification technique is essential to address this challenge. This paper concentrates on segmenting the pill image, which is crucial step to identify a pill. A color image segmentation algorithm is proposed by generating superpixels using the Simple Linear Iterative Clustering (SLIC) algorithm and merging the superpixels by thresholding the region adjacency graphs. The algorithm manages to supersede the challenges due to various backgrounds and lighting conditions of consumer-quality pill images --Abstract, page iii

    Real-World Pill Segmentation Based on Superpixel Merge using Region Adjacency Graph

    No full text
    Misidentified or unidentified prescription pills are an increasing challenge for all caregivers, both families and professionals. Errors in pill identification may lead to serious or fatal adverse events. To respond to this challenge, a fast and reliable automated pill identification technique is needed. The first and most critical step in pill identification is segmentation of the pill from the background. The goals of segmentation are to eliminate both false detection of background area and false omission of pill area. Introduction of either type of error can cause errors in color or shape analysis and can lead to pill misidentification. The real-world consumer images used in this research provide significant segmentation challenges due to varied backgrounds and lighting conditions. This paper proposes a color image segmentation algorithm by generating superpixels using the Simple Linear Iterative Clustering (SLIC) algorithm and merging the superpixels by thresholding the region adjacency graphs. Post-processing steps are given to result in accurate pill segmentation. The segmentation accuracy is evaluated by comparing the consumer-quality pill image segmentation masks to the high quality reference pill image masks

    Analyzing inter-reader variability affecting deep ensemble learning for COVID-19 detection in chest radiographs.

    No full text
    Data-driven deep learning (DL) methods using convolutional neural networks (CNNs) demonstrate promising performance in natural image computer vision tasks. However, their use in medical computer vision tasks faces several limitations, viz., (i) adapting to visual characteristics that are unlike natural images; (ii) modeling random noise during training due to stochastic optimization and backpropagation-based learning strategy; (iii) challenges in explaining DL black-box behavior to support clinical decision-making; and (iv) inter-reader variability in the ground truth (GT) annotations affecting learning and evaluation. This study proposes a systematic approach to address these limitations through application to the pandemic-caused need for Coronavirus disease 2019 (COVID-19) detection using chest X-rays (CXRs). Specifically, our contribution highlights significant benefits obtained through (i) pretraining specific to CXRs in transferring and fine-tuning the learned knowledge toward improving COVID-19 detection performance; (ii) using ensembles of the fine-tuned models to further improve performance over individual constituent models; (iii) performing statistical analyses at various learning stages for validating results; (iv) interpreting learned individual and ensemble model behavior through class-selective relevance mapping (CRM)-based region of interest (ROI) localization; and, (v) analyzing inter-reader variability and ensemble localization performance using Simultaneous Truth and Performance Level Estimation (STAPLE) methods. We find that ensemble approaches markedly improved classification and localization performance, and that inter-reader variability and performance level assessment helps guide algorithm design and parameter optimization. To the best of our knowledge, this is the first study to construct ensembles, perform ensemble-based disease ROI localization, and analyze inter-reader variability and algorithm performance for COVID-19 detection in CXRs

    Automated cervical digitized histology whole-slide image analysis toolbox

    No full text
    Background: Cervical intraepithelial neoplasia (CIN) is regarded as a potential precancerous state of the uterine cervix. Timely and appropriate early treatment of CIN can help reduce cervical cancer mortality. Accurate estimation of CIN grade correlated with human papillomavirus type, which is the primary cause of the disease, helps determine the patient's risk for developing the disease. Colposcopy is used to select women for biopsy. Expert pathologists examine the biopsied cervical epithelial tissue under a microscope. The examination can take a long time and is prone to error and often results in high inter-and intra-observer variability in outcomes. Methodology: We propose a novel image analysis toolbox that can automate CIN diagnosis using whole slide image (digitized biopsies) of cervical tissue samples. The toolbox is built as a four-step deep learning model that detects the epithelium regions, segments the detected epithelial portions, analyzes local vertical segment regions, and finally classifies each epithelium block with localized attention. We propose an epithelium detection network in this study and make use of our earlier research on epithelium segmentation and CIN classification to complete the design of the end-to-end CIN diagnosis toolbox. Results: The results show that automated epithelium detection and segmentation for CIN classification yields comparable results to manually segmented epithelium CIN classification. Conclusion: This highlights the potential as a tool for automated digitized histology slide image analysis to assist expert pathologists

    Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels

    Get PDF
    Background: Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades. Methods: In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network. Results: The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with demonstrated improvement over imaging-based and clustering-based benchmark techniques. Conclusions: The proposed DL-based nuclei segmentation Method with superpixel analysis has shown improved segmentation results in comparison to state-of-the-art methods

    EpithNet: Deep Regression for Epithelium Segmentation in Cervical Histology Images

    No full text
    Background: Automated pathology techniques for detecting cervical cancer at the premalignant stage have advantages for women in areas with limited medical resources. Methods: This article presents EpithNet, a deep learning approach for the critical step of automated epithelium segmentation in digitized cervical histology images. EpithNet employs three regression networks of varying dimensions of image input blocks (patches) surrounding a given pixel, with all blocks at a fixed resolution, using varying network depth. Results: The proposed model was evaluated on 311 digitized histology epithelial images and the results indicate that the technique maximizes region-based information to improve pixel-wise probability estimates. EpithNet-mc model, formed by intermediate concatenation of the convolutional layers of the three models, was observed to achieve 94% Jaccard index (intersection over union) which is 26.4% higher than the benchmark model. Conclusions: EpithNet yields better epithelial segmentation results than state-of-the-art benchmark methods
    corecore